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Abstract

The present paper considers the problem of dynamic behavior of thin-walled beams of arbitrary, closed cross-section, by

means of an exact solution. Starting from Benscoter’s theory, the differential equations of motion are derived by

postulating the principle of the virtual work due to a variation of displacements. In the case of simply supported thin-

walled beam, a closed-form solution for the coupled natural frequencies of free harmonic vibrations was derived. The

method is illustrated by examples and results are compared with analytical results analyzed by Vlasov’s theory as well as

with FEM results.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled beams with closed cross-sections have been widely used in many engineering applications.
These structures are characterized by a high stiffness to weight ratio and are applied when high torsional and
bending rigidities are required. The vibration characteristics of those elements are of fundamental importance
in the design of thin-walled structures. In the general case of arbitrary cross-section, lateral vibrations in two
perpendicular directions are coupled with torsional and warping vibrations, and the frequency equations of
such elements should be considered simultaneously.

In general, many research works are focused on the dynamic analysis of thin-walled closed beams with
various degrees of rigor. Several methods are available in the range of finite element [1–5] and finite strip [6–9]
to complex three-dimensional shell element model [10,11]. Some explicit analytical expressions for the
frequency equations and mode shapes of a thin-walled beam with closed cross-section are also available in the
literature. For example, Stavridis and Michaltsos [12] introduce non-dimensionalized eigenfrequency
parameters, which govern the dynamic behavior of the thin-walled beam, but practical performance of the
proposed solution, based on Vlasov’s theory, requires the use of a numerical procedure supported by a
computer program specially written for that purpose. An analytical method for free vibrations of box girders
is presented by Kristek [13] but only for cross-sections with two planes of symmetry where flexural vibrations
are separated from torsional vibration. Some researchers use the dynamic stiffness matrix method [14–16] to
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b, c, d, e coefficients in the frequency equation
C origin of coordinate system
E modulus of elasticity
F area of cross-section
G shear modulus
hnP distance from normal at arbitrary point

on contour to pole
hP distance from tangent at arbitrary point

on contour to pole
Ixx; Iyy; Ioo; Ihh; IP geometrical properties of

cross-section
Io
oo see Eq. (31)

K Saint Venant torsion constant
L length of element
mx, my, mP, mo external bending moments,

torsional moment and bimoment per
unit length

Mx, My bending moments
Mo bimoment
n,s curvilinear coordinates
N axial force
O1 starting point ¼ point from which s is

measured
p frequency
p� see Eq. (39)
px, py, pz externally applied loads per unit length

in x, y and z directions, respectively
P shear center
t time
TP total torsional moment
TS Saint Venant torsional moment
u, v displacements of shear center in direction

of x and y axes

un; vn;wn displacements of an arbitrary point on
the contour

Ū work of actual stresses
U, V,F amplitudes of the transverse displace-

ments and torsional rotation
Vx,Vy shear forces
w axial displacement of cross-section as

rigid
W̄ work of external load and inertia forces
x, y, z Cartesian coordinates
xP,yP coordinate of the shear centre
a angle between normal to the profile

middle line and x-axis
gzs,gT shear strain
d symbol of variation
e strain tensor
ez longitudinal strain
W warping parameter
ln np/L
xn; Zn;wn displacements in normal, tangential

and z directions
r specific mass
r stress vector
sz normal stress
tzs shear stress
tT shear stress due to torsion
tV shear stress due to bending
~t Saint Venant shear flow for Gj0 ¼ 1
j rotation of the cross-section around its

shear centre
w see Eq. (39)
o warping function with pole at shear

center
()0 qðÞ=qz
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solve free or forced vibration problems of thin-walled structures. The method is referred as an exact method
since it is based on exact shape functions obtained from the exact solution of differential equations. As Moon-
Young et al. [16] pointed out, this analytical method, however, is sometimes inefficient because analytical
operations in solving a system of simultaneous ordinary differential equations with many variables may be
too complex.

The objective of this work is to develop an exact analytical solution that enables the prediction of natural
frequencies and mode shape of the free harmonic coupled vibrations of thin-walled beams with closed cross-
sections accurately and efficiently. The expressions are concise and very simple and as such connvenient to be
used by practicing engineer who does not need to go into detail of thin-walled beam theory. The Vlasov
assumption for open profiles, setting the shear strain in the middle surface equal to zero, is not made because
under this assumtion warping is excluded. Here, the warping function is described by a function given
beforehand, and is the same as in the case of the Saint Venant’s function of free-warping for beam with closed
profiles. The function that defines the warping intensity represents a new unknown that may be derived as a
function of the angle of rotation of the profile.



ARTICLE IN PRESS
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2. Basic theory

A straight thin-walled beam with a closed, generally multicellular cross-section is considered. In order to
determine the geometry of the beam two coordinate systems are used. The first of these is an orthogonal
Cartesian coordinate system for which the z-axis coincides with the longitudinal centroidal axis, while x and y

coincide with principal axes of the section. The second coordinate system is a curvilinear coordinate system
(n, s, z) where n is the normal coordinate measured along the normal to contour (middle line of a cross-
section), and s is profile coordinate measured along the contour line from arbitrarily taken starting point O1.
The wall thickness is denoted by t(s).

2.1. Suppositions

The theory of thin-walled beams with closed sections rests on the following simplifying assumptions:
1.
 The cross-section is perfectly rigid in its own plane (it is supposed that the cross-sections are stiffened by
installing intermediate diaphragms in order to suppress all undesirable modes of distortion of the cross-
sections).
2.
 The part of the shear strains in the middle surface of the wall, due to the bending moment, is negligible.

3.
 The distribution of warping deformation is the same as in the case of Saint Venant torsion.

In the technical theory of thin-walled beams with closed sections we assumed that normal stresses are
constant over the entire thickness of the wall.

2.2. Kinematics and strains

According to the first assumption the cross-sectional behavior can be described by displacement
components u and v of the shear center P as the pole and the rotation angle j about the same pole, Fig. 1.
From geometric considerations, normal and tangential displacements of an arbitrary point S* with
y
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Fig. 1. Section geometry.



ARTICLE IN PRESS
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coordinates x, y on the contour, where the angle of twist is sufficiently small, are

xnðs; zÞ ¼ v sin aþ u cos aþ jhnP,

Znðs; zÞ ¼ v cos a� u sin aþ jhP, ð1Þ

where a denotes the angle between the x and n axes, hnP represents the perpendicular distance from normal at
point S* to the point P given by

hnP ¼ ðx� xPÞ sin a� ðy� yPÞ cos a (2)

and hp represents the perpendicular distance from tangent at point S* to the point P given by

hP ¼ ðx� xPÞ cos aþ ðy� yPÞ sin a, (3)

hnP and hp are positive when normal n and tangent t, respectively, are rotating counter clockwise about the
pole P, when observed from positive z direction.

The longitudinal displacement w* of an arbitrary point on contour may be found by using the hypothesis
concerning the absence of shearing strain in the middle surface due to bending moment

wn ¼ w� u0x� v0y� Wo. (4)

The first three terms on the right-hand side of Eq. (4) describe longitudinal displacements of the cross-
section as a plane surface. The last term describes the warping of the cross-section, and is given as the product
of two functions. The first function W(z)defines the warping intensity and can not be directly expressed as a
function of the other parameters used to describe the plane deformation of the cross-section. This function
represents a new unknown. The second function o(s), being the same for all cross-sections of a member,
describes warping of the cross-section qualitatively. This function depends only of geometrical properties of
cross-section and is defined with the solution of Saint-Venant‘s torque

oðsÞ ¼
Z s

o

ðhP � ~tÞds, (5)

where ~t represents Saint Venant shear flow for Gj0 ¼ 1.
Component deformations, different from zero, are given by

�z ¼
qwn

qz
¼ w0 � u00x� v00y� W0o,

gzs ¼ gT ¼
qZn
qz
þ

qwn

qs
¼ j0hP � WðhP � ~tÞ. ð6Þ

2.3. Stresses and stress resultants

From Hooke’s law for normal stress sz we get

sz ¼ E�z ¼ Eðw0 � u00x� v00y� W0oÞ. (7)

The shear stresses tzs, uniformly distributed over the thickness, may be expressed as a sum of the shear
stresses tT produced by torsion and the shear stresses tV produced by bending

tzs ¼ tT þ tV . (8)

The shear stresses tT can be derived directly from corresponding strains

tT ¼ GgT ¼ G½j0hP � ðhP � ~tÞ�. (9)

The shear stresses tV cannot be obtained by simply applying Hooke’s law, but only from the axial
equilibrium condition.
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Reducing the normal stresses on the center of gravity and shear stresses on the pole P we get for stress
resultants the following expressions:

Normal force N ¼
RR
F

sz dF ;

Bending moment with respect to the x axes Mx ¼
RR
F

szydF ;

Bending moment with respect to the y axes My ¼ �
RR
F

szxdF ;

Shear force in the x direction V x ¼ �
RR
F

tzs sin adF ;

Shear force in the y direction V y ¼
RR
F

tzs cos adF ;

Torsion moment TP ¼
RR
F

tzshP dF or TP ¼
RR
F

tT hP dF :

(10)

As it is well known, in the theory of thin-walled beams, we introduce a new generalized force

Mo ¼

ZZ
F

szodF . (11)

This force, due to warping, is called bimoment.
2.4. Equations of motion

The equations of motion of thin-walled beam can be obtained using the principle of virtual displacements.
A small element between cross-sections z1 ¼ z and z2 ¼ z+dz, Fig. 2, subjected to external loads p̄ðp̄x; p̄y; p̄zÞ

per unit area of midplane is considered.
At any point on the cross-section z1 acts as a stress vector

r ¼ tzstþ sziz ¼ �tzs sin aix þ tzs cos aiy þ sziz. (12)

The vector of virtual displacements du, which satisfies the necessary continuity conditions and displacement
boundary conditions, may be adopted in the same form as a vector of real displacements

du ¼ dunix þ dvniy þ dwniz

¼ ½du� djðy� yPÞ�ix þ ½dvþ djðx� xPÞ�iy

þ ðdw� du0x� dv0y� dWoÞiz. ð13Þ
ds p dsdz

−�

�u

�dF

(� + ∂� dz) dF
∂z

δu + ∂δu dz
∂z

dz
udFdz⋅⋅

Fig. 2. Differential element of beam.
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Virtual displacement parameters are arbitrary functions of coordinates and do not depend upon external
loads.

The virtual work expression is

dW̄ þ dŪ ¼ 0, (14)

where dW̄ ¼ virtual work of external load and inertia forces through virtual displacements du and dŪ ¼

virtual work of actual stresses r realized through virtual strains d� ¼ ½d�zdgT �.
The virtual work of the external load and inertia forces per unit length of the element is

dW̄ ¼

ZZ
F

ðr0duþ rdu0ÞdF þ

Z
s

p̄duds� r
ZZ
F

€ududF , (15)

where r is the density (mass per unit volume), and ü is the acceleration vector given by

€u ¼ €unix þ €vniy þ €wniz

¼ ½ €u� €jðy� yPÞ�ix þ ½€vþ €jðx� xPÞ�iy

þ ð €w� €u0x� €v0y� €WoÞiz. ð16Þ

A dot denotes differentiation with respect to time.
Substituting (12), (13) and (16) into (15), the following expression for dW is obtained:

dW̄ ¼

ZZ
F

�t0zs sin a½du� djðy� ypÞ�

n

þ t0zs cos a½dv� djðx� xpÞ�

þ s0zðdw� dv0y� du0x� dWoÞ

� tzs sin a½du0 � dj0ðy� yPÞ�

þ tzs cos a½dv0 þ dj0ðx� xPÞ�

þ szðdw0 � dv00y� du00x� dW0oÞ
�
dF

þ

Z
s

p̄x½du� djðy� yPÞ�
�

þ p̄y½dvþ djðx� xPÞ�

þ p̄zðdw� du0x� dv0y� dWoÞ
�
ds

� r
ZZ
F

ðdun €un þ dvn €vn þ dwn €wnÞdF: ð17Þ

The virtual work of the internal load due to the corresponding variation of deformation, per unit length of
the element, is

dŪ ¼ �

ZZ
F

ðszd�z þ tTdgT ÞdF . (18)

Using expressions (6) for virtual strains, where real displacement should be replaced by virtual
displacement, one gets for dU

dŪ ¼ �

ZZ
F

szðdw0 � du00x� dv00y� dW0oÞ þ tT ½dj0hP � dWðhP � ~tÞ�
� �

dF . (19)
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By suitable rearrangement of (17) and (19) in accordance with virtual displacement parameters, the principle
of virtual work may be expressed as

dw

ZZ
F

s0z dF � r
ZZ
F

€wn dF þ

Z
s

p̄z ds

8<
:

9=
;

þ du �

ZZ
F

t0zs sin adF � r
ZZ
F

€un dF þ

Z
s

p̄x ds

8<
:

9=
;

þ dv

ZZ
F

t0zs cos adF � r
ZZ
F

€vn dF þ

Z
s

p̄y ds

8<
:

9=
;

þ dj
ZZ
F

t0zshP dF þ r
ZZ
F

ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF

8<
:

þ

Z
s

p̄y x� xPð Þ � p̄x y� yP

� �h i
ds

9=
;

� du0
ZZ
F

ðs0zxþ tzs sin aÞdF � r
ZZ
F

x €wn dF þ

Z
s

p̄zxds

8<
:

9=
;

� dv0
ZZ
F

ðs0zy� tzs cos aÞdF � r
ZZ
F

y €wn dF þ

Z
s

p̄zyds

8<
:

9=
;

� dW
ZZ
F

s0zo� tT ðhP � ~tÞ
� �

dF � r
ZZ
F

o €wn dF þ

Z
s

p̄zods

8<
:

9=
;

� dj0
ZZ
F

ðtzs � tT ÞhP dF

8<
:

9=
; ¼ 0. ð20Þ

To satisfy these equations identically for any virtual displacement parameter dw; du; dv; . . . it is necessary that
the expressions in the braces vanish. Now, using the expressions for stress resultants (10) and (11),
one obtains

N 0 � r
ZZ
F

€wn dF þ pz ¼ 0,

V 0x � r
ZZ
F

€undF þ px ¼ 0,

V 0y � r
ZZ
F

€vn dF þ py ¼ 0,

T 0P þ r
ZZ
F

ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF þmP ¼ 0,

M 0
y þ V x þ r

ZZ
F

x €wn dF þmy ¼ 0,
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M 0
x � V y � r

ZZ
F

y €wn dF þmx ¼ 0,

M 0
o � TP þ Ts � r

ZZ
F

o €wn dF þmo ¼ 0, ð21Þ

where TS is Saint Venant torque

TS ¼

ZZ
F

tT ~t dF . (22)

The forces Vx and Vy can be eliminated from Eq. (21)5,6 in order to obtain five equations

N 0 � r
ZZ
F

€wn dF þ pz ¼ 0,

M 00
y þ r

ZZ
F

x €w0� dF þ r
ZZ
F

€un dF � px þm0y ¼ 0,

M 00
x � r

ZZ
F

y €w0� dF � r
ZZ
F

€vn dF þ py þm0x ¼ 0,

T 0P þ r
ZZ

F ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF þmP ¼ 0,

M 0
o � TP þ Ts � r

ZZ
F

o €wn dF þmo ¼ 0. ð23Þ

Substituting the expressions for stresses (7) and (9) in Eqs. (10), (11) and (22), the stress resultants can be
expressed directly in terms of the displacements

N ¼ EFw0,

My ¼ EIxxu00,

Mx ¼ �EIyyv00,

Mo ¼ �EIooW
0,

TP ¼ GIhhj0 � GðIhh � KÞW,

TS ¼ GKj0, ð24Þ

where K is Saint Venant,s torsion constant for thin-walled beam with multicellular cross-section

K ¼

ZZ
F

~t2 dF ¼

ZZ
F

~thP dF . (25)

Now, by substituting (24) into (23) one obtains

EFw00 � r
ZZ
F

€wn dF ¼ �pz,

EIxxu0000 þ r
ZZ
F

x €w0
n
dF þ r

ZZ
F

€un dF ¼ px �m0y,

EIyyv0000 þ r
ZZ
F

y €w0
n
dF þ r

ZZ
F

€vn dF ¼ py þm0x,
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GIhhj00 � GðIhh � KÞW0 þ r
ZZ
F

ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF ¼ �mP,

EIooW
00
þ GðIhh � KÞðj0 � WÞ þ r

ZZ
F

o €wn dF ¼ mo. ð26Þ

Last two equations may be reduced to one by eliminating the unknown W. From Eq. (26)4 follows

W0 ¼
Ihh

Ihh � K
j00 þ

r
GðIhh � KÞ

ZZ
F

ðy� yPÞ €un � ðx� xPÞ€vn
� �

dF þ
mP

GðIhh � KÞ
. (27)

Differentiating Eq. (26)5 once with respect to z gives

EIooW
000
þ GðIhh � KÞðj00 � W0Þ þ r

ZZ
F

o €w0� dF ¼ m0o. (28)

Eqs. (26-4) and (28) are now added to obtain

EIooW
000
� GKj00 þ r

ZZ
F

o €w0� dF � r
ZZ
F

ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF ¼ m0o þmP. (29)

Finally, differentiating Eq. (27) twice and substituting in Eq. (29), the following equation is derived:

EI0ooj
0000 � GKj00 þ r

ZZ
F

o €w0� dF � r
ZZ
F

ðy� yPÞ €un � ðx� xpÞ€vn
� �

dF

þ r
EI0oo
GIhh

ZZ
F

ðy� yPÞ €u
00
� � ðx� xpÞ€v

00
�

� �
dF ¼ m0o þmP �

EI0oo
GIhh

m00P, ð30Þ

where

I0oo ¼ Ioo
Ihh

Ihh � K
. (31)

Taking account of Eqs. (16) and (27) one gets the equations

EFw00 � rF €w ¼ �pz,

EIxxu0000 � rIxx €u
00 þ rF €uþ ryPF €j ¼ px �m0y,

EIyyv0000 � rIyy €v
00 þ rF €v� rxPF €j ¼ py þm0x,

EI0ooj
0000 � GKj00 � rI0oo 1þ

EIP

GIhh

� 	
€j00 þ

r2I0oo
GIhh

IP þ rIP €j

þ
r2I0oo
GIhh

yPF �
r2I0oo
GIhh

xPF þ ryPF €u� rxPF €v�
rEI0oo
GIhh

yPF €u00 þ
rEI0oo
GIhh

xPF €v00

¼ m0o þmP �
EI0oo
GIhh

m00P. ð32Þ

The first equation in Eq. (32), describing axial vibration, is uncoupled from the rest of the system and may be
analyzed independently.

The free harmonic transverse and torsional vibrations are defined by the coupled homogeneous
Eqs. (32)2,3,4. Their solutions are assumed in the following form:
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uðz; tÞ

vðz; tÞ

jðz; tÞ

2
64

3
75 ¼

UðzÞ

V ðzÞ

FðzÞ

2
64

3
75 sin pt, (33)

where p is the radian frequency and U, V and F are amplitudes of the transverse displacements and torsional
rotation. Substituting (33) into homogeneous Eq. (32) yields

EIxxU 0000 þ rp2IxxU 00 � rp2FU � rp2yPFF ¼ 0,

EIyyV 0000 þ rp2IyyV 00 � rp2FV þ rp2xPFF ¼ 0,

EI0ooF
0000 þ rp2I0oo 1þ

EIP

GIhh

� 	
� GK


 �
F00 � rp2IP � r2p4 I0ooIP

GIhh

� 	
F

� rp2yPF � r2p4 I0oo
GIhh

yPF

� 	
U þ rp2xPF � r2p4 I0oo

GIhh

xPF

� 	
V

þ rp2 EI0oo
GIhh

yPFU 00 � rp2 EI0oo
GIhh

xPFV 00 ¼ 0. ð34Þ

In the case of a beam with simply supported ends (fork supports at each end which prevent rotation and can
warp freely) the end conditions are

U

V

F

2
64

3
75 ¼

0

0

0

2
64
3
75;

U 00

V 00

F00

2
64

3
75 ¼

0

0

0

2
64
3
75. (35)

These requirements are satisfied by taking

UðzÞ

V ðzÞ

FðzÞ

2
64

3
75 ¼

CU

CV

CF

2
64

3
75 sin lnz, (36)

where CU, CV and CF are constants and ln ¼ np=L; n ¼ 1; 2; etc:
Substituting (36) into (34) results in

EIxxl
4
n � rp2 l2nIxx þ F

� �� �
CU � rp2yPFCF ¼ 0,

EIyyl
4
n � rp2 l2nIyy þ F

� �� �
CV þ rp2xPFCF ¼ 0,

EI0ool
4
n þ GKl2n � rp2 l2nI0oo þ

l2nI0ooEIP

GIhh

þ IP

� 	
þ r2p4 I0ooIP

GIhh


 �
CF

þ �rp2yPF 1þ
l2nEI0oo

GIhh

� 	
þ r2p4 I0ooyPF

GIhh


 �
CU þ rp2xPF 1þ

l2nEI0oo
GIhh

� 	
� r2p4 I0ooxPF

GIhh


 �
CV ¼ 0. ð37Þ

In order to find non-trivial solutions for CU, CV and CF the detrminant of the above system must be equal
zero, i.e.

l4nIxx � l2nIxx þ F
� �

pn 0 �yPFpn

0 l4nIyy � l2nIyy þ F
� �

pn xPFpn

wyPFp2
n
� yPF 1þ wl2n

� �
pn �wxPFp2

n
þ xPF 1þ wl2n

� �
pn wIPp2

n
� l2nI0oo þ wl2nIP þ IP

� �
pn þ l4nI0oo þ l2nðGK=EÞ

2
664

3
775 ¼ 0

(38)

where

w ¼
EI0oo
GIhh

; pn ¼
r
E

p2. (39)
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Then we obtain the following algebraic frequency equation of the fourth order

ap4
n
þ bp3

n
þ cp2

n
þ dpþ e ¼ 0 (40)

with the coefficients

a ¼ l2nIxx þ F
� �

l2nIyy þ F
� �

wIP � l2nIxx þ F
� �

wx2
PF2 � l2nIyy þ F

� �
wy2

PF2,

b ¼ x2
PIxx þ y2

PIyy

� �
l4nwF2 � l2nIyy þ F

� �
Ixx þ l2nIxx þ F

� �
Iyy

� �
l4nwIP

þ l2nIxx þ F
� �

x2
PF 2 þ l2nIyy þ F

� �
y2

PF 2
� �

1þ wl2n
� �

� l2nIxx þ F
� �

l2nIyy þ F
� �

l2nI0oo þ l2nwIP þ IP

� �
,

c ¼ l2nIxx þ F
� �

l2nIyy þ F
� �

l4nI0oo þ l2n
GK

E

� 	
� 1þ wl2n
� �

l4nx2
PF2Ixx þ l4ny2

PF2Iyy

� �

þ l8nIxxIyywIP þ l4nIxx l2nIyy þ F
� �

þ l4nIyy l2nIxx þ F
� �� �

l2nI0oo þ l2nwIP þ IP

� �
;

d ¼ � l8nIxxIyy l2nI0oo þ l2nwIP þ IP

� �
� l4nI0oo þ l2n

GK

E

� 	
l4nIxx l2nIyy þ F

� �
þ l4nIyy l2nIxx þ F

� �� �
,

e ¼ l12n IxxIyyI0oo þ l10n

GK

E
IxxIyy. ð41Þ

Note that frequency equation of Vlasov model, Prokić [17], may be obtained by introducing into Eq. (38):
I0oo ¼ Ioo and w ¼ 0.

3. Numerical examples

Three numerical examples are given here to illustrate the accuracy of the method derived in this paper.
The geometrical properties of the cross-sections of the beam, in the examples below, were calculated using

the computer program given in Ref. [18].

3.1. Example 1

To verify the results obtained by the analytical solution based on Benscoter’s theory a simply supported
box-girder bridge with span length of 45.72m is considered, Fig. 3. It allows a comparison with results given
by Huang et al. [3], using finite element method, and Hamed and Frostig [19].

The geometrical and material properties of the beam are

E ¼ 2:779� 107 kNm�2,

G ¼ 1:068� 107 kNm�2,

F ¼ 7:20m2,

Ixx ¼ 52:0320m4,

Iyy ¼ 12:1860m4,

Ioo ¼ 9:7985m6,

K ¼ 23:8356m4,

Ihh ¼ 32:6149m4,

IP ¼ 64:8185m4,

r ¼ 2:54 kN s2 m�4,

xP ¼ 0:0,

yP ¼ � 0:2888m:

The first five natural frequencies obtained from the present theory are shown in Table 1 together with those
given in Refs. [3,19].
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Table 1

Natural frequencies (Hz) of beam studied as Example 1

Mode no. Mode shape Present solutions Reference [5] Reference [16]

1 Vertical flexure 3.202 3.220 3.172

2 Horizontal flexure 6.524 6.644 6.294

3 Second vertical flexure 12.659 12.962 12.067

4 Torsion 13.628 14.961 11.860

5 Second torsion 27.840 19.975 15.184

0.4 0.
3

0.
3

0.4

3.
0

2.0 6.0 2.0

Fig. 3. Cross-section layout for Example 1.
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Fig. 4. Cross-section layout for Example 2.
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The analytical results of Benscoter’s theory and the models proposed in Refs. [3,19] agree well in the lower
natural frequencies. As we move towards higher vibration modes, differences in natural frequencies increase,
especially in the torsional modes, due to distortion effects of the bridge cross-section.

3.2. Example 2

A simply supported beam with a general cross-section shown in Fig. 4 is investigated.
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The geometrical and mechanical properties of the beam are as follows:

E ¼ 2:1� 108 kNm�2,

G ¼ 8:07� 107 kNm�2,

F ¼ 0:21m2,

Ixx ¼ 0:329097m4,

Iyy ¼ 0:0960282m4,

Ioo ¼ 0:0133434m6,

K ¼ 0:0926546m4,

Ihh ¼ 0:140630m4,

IP ¼ 0:45844m4,

r ¼ 78:5=9:81 ¼ 8:002 kN s2 m�4,

xP ¼ � 0:33536m;

yP ¼ 0:21491m:

For n ¼ 1, 2 and 3 four natural frequencies of a simply supported thin-walled beam, were determined. Four
numerical values characterize four different internal modes of natural frequencies: predominantly flexural
mode, in x and y directions, predominantly torsional mode and predominantly warping mode. In Table 2, the
results are compared with results of Vlasov’s theory presented by Prokić [17], for different slenderness ratios of
thin walled beam.

3.3. Example 3

As a third example, the simply supported beam with cross-section shown in Fig. 5 is considered.
The geometrical and mechanical properties of the beam are given in Table 3. In Table 4, the analytical

solutions of Benscoter’s model are compared with analytical solutions of Vlasov’s model.
In this example the influence of distortional behavior of cross-sections on vibration characteristic of box

girder is also analyzed, changing the wall thickness (t ¼ 2, 4 and 6 cm) and span length (L ¼ 10 and 15m).
Numerical solutions by the present study, based on the assumption of undeformed cross-section, are
compared with FEM solutions analyzed by 600 shell elements of Tower 5 [20]. The model is provided with
Table 2

Natural frequencies (Hz) of beam studied as Example 2

External

mode

L ¼ 5m L ¼ 10m L ¼ 50m

Benscoter

theory

Vlasov

theory

Error (%) Benscoter

theory

Vlasov

theory

Error (%) Benscoter

theory

Vlasov

theory

Error (%)

n ¼ 1 146.40 148.04 1.13 51.89 51.90 0.01 2.17 2.17 0.00

209.68 209.89 0.10 75.05 75.11 0.08 14.01 14.01 0.00

319.66 319.67 0.00 96.23 96.23 0.00 14.86 14.86 0.00

1090.79 — — 993.35 — — 959.80 — —

n ¼ 2 319.30 350.12 9.65 146.40 148.04 1.13 8.65 8.65 0.00

676.30 676.69 0.06 209.68 209.89 0.10 15.85 15.85 0.00

867.94 867.96 0.00 319.66 319.67 0.00 29.92 29.93 0.00

1410.71 — — 1090.79 — — 964.06 — —

n ¼ 3 498.54 620.40 24.44 231.59 241.66 4.35 19.31 19.31 0.00

1223.25 1223.75 0.04 424.02 424.31 0.07 34.73 34.73 0.00

1417.81 1417.82 0.00 589.54 589.55 0.00 45.71 45.72 0.01

1819.50 — — 1234.83 — — 971.13 — —
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Table 3

Geometric and material properties of beam studied in Example 3

t (cm) 2.0 4.0 6.0

E (kNm�2) 2.10� 108 2.10� 108 2.10� 108

G (kNm�2) 8.07� 107 8.07� 107 8.07� 107

r (kN s�2m�4) 8.002 8.002 8.002

F (m2) 0.05 0.10 0.15

xP (m) �0.13278 �0.13246 �0.13192

yP (m) �0.29245 �0.29220 �0.29178

Ixx (m4) 0.00218815 0.00438033 0.00658057

Iyy (m4) 0.00156318 0.00313234 0.00471343

Ioo (m6) 0.00018136 0.00036343 0.00054690

K (m4) 0.00043333 0.00090666 0.00146000

Ihh (m4) 0.00538981 0.01077750 0.01616120

IP (m4) 0.00890920 0.01780532 0.02667477

C x

y

0.40 0.10 0.10

0.
30

t

0.
20

0.10 0.40 0.10

°P

Fig. 5. Cross-section layout for Example 3.

Table 4

Natural frequencies (Hz) of beam studied as Example 3 (t ¼ 2 cm), comparison with Vlasov theory

External

mode

L ¼ 5m L ¼ 10m L ¼ 15m

Benscoter

theory

Vlasov

theory

Error (%) Benscoter

theory

Vlasov

theory

Error (%) Benscoter

theory

Vlasov

theory

Error (%)

n ¼ 1 52.88 53.12 0.44 14.06 14.06 0.00 6.29 6.29 0.00

59.72 59.83 0.18 16.01 16.01 0.00 7.30 7.30 0.00

150.52 152.14 1.08 59.86 59.88 0.04 37.75 37.75 0.00

2714.72 — — 2660.77 — — 2650.50 — —

n ¼ 2 176.66 180.76 2.32 52.88 52.95 0.13 24.68 24.68 0.00

229.00 229.26 0.12 59.72 59.75 0.04 27.67 27.68 0.01

456.23 461.52 1.16 150.52 150.96 0.29 85.59 85.67 0.09

2909.93 — — 2714.72 — — 2675.00 — —

n ¼ 3 350.43 374.67 6.92 107.95 108.87 0.85 52.88 52.95 0.13

498.21 499.08 0.17 130.91 131.04 0.10 59.72 59.75 0.05

886.09 901.46 1.73 283.93 286.00 0.73 150.52 150.96 0.29

3187.15 — — 2799.60 — — 2714.72 — —
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Table 5

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 10m, t ¼ 2 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 14.06 12.88 13.60 13.99 14.01

Horizontal 16.01 13.56 15.80 15.93 15.95

Torsion 59.86 32.74 40.15 55.03 55.79

Second vertical 52.88 31.16 38.30 47.52 50.08

Second horizontal 59.72 40.20 51.89 55.18 57.22

Table 6

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 10m, t ¼ 4 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 14.08 13.68 13.99 14.07 14.09

Horizontal 16.05 15.10 15.99 16.02 16.04

Torsion 60.91 44.60 56.34 57.28 57.50

Second vertical 53.13 45.54 47.44 50.13 51.13

Second horizontal 59.85 48.68 57.18 57.63 57.97

Table 7

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 10m, t ¼ 6 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 14.12 13.92 14.09 14.12 14.12

Horizontal 16.11 15.57 16.08 16.10 16.11

Torsion 62.63 51.57 59.49 59.57 59.73

Second vertical 53.53 48.48 50.20 51.20 51.71

Second horizontal 60.07 52.70 58.10 58.22 58.36

Table 8

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 15m, t ¼ 2 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 6.29 6.18 6.30 6.30 6.30

Horizontal 7.30 6.99 7.31 7.31 7.31

Torsion 37.75 24.67 32.58 34.93 35.27

Second vertical 24.68 21.36 22.10 23.56 24.06

Second horizontal 27.67 23.27 26.86 27.02 27.14
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Table 9

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 15m, t ¼ 4 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 6.30 6.30 6.31 6.31 6.31

Horizontal 7.31 7.24 7.31 7.32 7.32

Torsion 38.50 31.51 36.36 36.53 36.61

Second vertical 24.74 23.44 23.93 24.19 24.37

Second horizontal 27.75 25.88 27.37 27.40 27.46

Table 10

Natural frequencies (Hz) of beam studied as Example 3, comparison with FE L ¼ 15m, t ¼ 6 cm

Dominant mode shape Present solution Finite element

Number of transverse diaphragms (n)

n ¼ 0 n ¼ 2 n ¼ 4 n ¼ 6

Vertical 6.31 6.31 6.35 6.36 6.36

Horizontal 7.34 7.31 7.37 7.38 7.38

Torsion 39.72 34.79 38.20 38.23 38.23

Second vertical 24.82 24.08 24.37 24.46 24.54

Second horizontal 27.87 26.72 27.59 27.61 27.63
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some intermediate transverse diaphragms (n ¼ 0, 2, 4 and 6) allowing the variability of the distortion rigidity
studied. The diaphragms have regular distances along the longitudinal axis of the beam and are supposed to be
of infinite rigidity in-plane and zero out-plane.

The first five natural frequencies of free vibration obtained by Benscoter’s theory and FEM are compared in
Tables 5–10. The corresponding first five normal shapes (predominant vertical, horizontal, second vertical,
second horizontal and torsion), for L ¼ 15m, t ¼ 2 cm and n ¼ 2, are shown in Figs. 6(a)–(e). The results
given illustrate that:
a.
 As we move towards higher vibration modes, differences in natural frequencies increase, especially in the
torsional modes.
b.
 Results of Benscoter’s theory are in good agreement with real vibration behavior of thin-walled beam with
increasing distortional rigidity of cross-sections and slenderness of the beam.
c.
 Larger discrepancies between Benscoter results and FEM results of real structures that consist of
deformable closed sections may rise as a consequent of the Benscoter’s assumption that the cross-section is
perfectly rigid in its own plane. That happens in the case of less distortion rigidity of cross-section or
when the beams are constructed without sufficient number of diaphragms that cause the section shape to
distort.

4. Conclusion

In the case of simply supported beams of non-deformable closed cross-sections, the exact solution for
natural frequencies of free harmonic vibrations was derived. Even in the case of thin-walled beam with
deformable cross-sections, when the effects of distortion on the dynamic behavior of thin-walled beam are
considerable, the solution based on Benscoter’s theory may be useful from the viewpoint of initial beam design
and can be used to validate the other approximate methods.
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[T=0.1585sec / f=6.31Hz]

[T=0.1366sec / f=7.32Hz]

[T=0.0452sec / f=22.10Hz]

[T=0.0372sec / f=26.86Hz]

[T=0.0307sec / f=32.58Hz]

a

b

c

d

e

Fig. 6. First five normal mode shapes of Example 3. (L ¼ 15m, t ¼ 2 cm, n ¼ 2): (a) mode 1-vertical; (b) mode 2-horizontal; (c) mode 3-s

vertical; (d) mode 4-s horizontal; (e) mode 5-torsion.
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Examination of Tables 2 and 4 shows that we have not much differences in the fundamental frequency for
Benscoter’s and Vlasov’s model. As we move toward higher vibration modes and toward less slender beams
differences in natural frequencies for two models increase.
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It may be supposed that it is reasonable enough to extend this conclusions to the beams with other
boundary conditions, but this demands further examination.
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Appendix A

The values that determine geometrical properties of cross-section are given by

Ixx ¼

ZZ
F

x2 dF ,

Iyy ¼

ZZ
F

y2 dF ,

Ioo ¼

ZZ
F

o2
P dF ,

Ihh ¼

ZZ
F

h2
P dF ;

IP ¼

ZZ
F

ðx� xPÞ
2 þ ðy� yPÞ

2
� �

dF .

Externally applied loads and moments per unit length of a beam are as follows:

px ¼

Z
s

p̄x ds; py ¼

Z
s

p̄y ds; pz ¼

Z
s

p̄z,

mx ¼

Z
s

p̄zyds; my ¼ �

Z
s

p̄zxds; mP ¼

Z
s

½p̄yðx� xPÞ � p̄xðy� yPÞ�ds,

mo ¼

Z
s

p̄zoP ds.
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[18] A. Prokić, Computer program for determination of geometrical properties of thin-walled beams with open-closed section, Computers

& Structures 74 (2000) 705–715.

[19] E. Hamed, Y. Frostig, Free vibrations of multi-girder and multi-cell boxbridges with transverse deformations effects, Journal of

Sound and Vibration 279 (2005) 699–722.

[20] Tower 5, Professional Integrated Software—Finite Element Analysis and Design of Structures, Radimpex, Beograd.


	Dynamic analysis of thin-walled closed-section beams
	Introduction
	Basic theory
	Suppositions
	Kinematics and strains
	Stresses and stress resultants
	Equations of motion

	Numerical examples
	Example 1
	Example 2
	Example 3

	Conclusion
	Acknowledgments
	References


